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ULTRACONVERGENCE 
OF THE PATCH RECOVERY TECHNIQUE II 

ZHIMIN ZHANG 

ABSTRACT. The ultraconvergence property of a gradient recovery technique 
proposed by Zienkiewicz and Zhu is analyzed for the Laplace equation in the 
two dimensional setting. Under the assumption that the pollution effect is 
not present or is properly controlled, it is shown that the convergence rate 
of the recovered gradient at an interior node is two orders higher than the 
optimal global convergence rate when even-order finite element spaces and 
local uniform rectangular meshes are used. 

1. INTRODUCTION 

In a previous work [6], the ultraconvergence property (i.e., two orders higher than 
the optimal global convergence rate) of the Zienkiewicz-Zhu patch recovery tech- 
nique was justified for a class of two-point boundary value problems. The current 
work is devoted to the theoretical justification of the ultraconvergence phenomenon 
in the two dimensional setting. The main difficulty in the higher-dimensional situ- 
ation is that when the domain has a nonsmooth boundary, the solution may have 
corner singularity, and consequently, the finite element approximation may suffer 
from "pollution effect", which will result in the failure of the recovery procedure. 
There have been many techniques to treat the pollution effect caused by domain 
singularity, and perhaps the most popular one is local mesh refinement. In this 
paper, we assume that a certain method is applied and the pollution effect is under 
control. Therefore we can concentrate on the local recovery. To further simplify the 
matter, we use the Laplace equation as the model problem. Then it can be shown 
that the patch recovery procedure results in ultraconvergence gradient recovery at 
an interior node when local uniform rectangular meshes and even-order elements 
are used. 

2. THE PATCH RECOVERY TECHNIQUE 

Consider the Dirichlet problem on a bounded domain Q C R2 with a piecewise 
smooth boundary &Q: 

(2.1) -Au f in Q, uIaQ = O. 

We assume that f is sufficiently smooth for our analysis. 
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The weak formulation of (2.1) is to find u C HO'(Q) such that 

(2.2) j VuVvdxdy j fvdxdy, Vv C HO'(Q). 

Let Th be a sequence of subdivisions of Q. An element of Th can be either a 
triangle or a quadrilateral. But we assume that rectangular elements are used on 
an interior region away from the boundary &Q. It is on this region that the patch 
recovery technique will be applied and analyzed. The finite element space Sh(Q) 
is defined as usual, and it contains continuous piecewise polynomials of degree not 
greater than r. 

Now we define local finite element spaces for rectangular elements. Given a 
rectangular element K, let FK be the linear mapping that maps the reference 
element K = [-1,1] x [-1,1] onto K. We then denote v = v o FK for function v 
on element K. 

We assume on K, that the polynomial basis 'Pr contains P(r) and is contained in 
Q(r), where P(r) denotes the class of polynomials which are of degree r, and Q(r), 
the class of polynomials of degree r in each variable separately. In other words, any 
element p C P(r) has the form 

r 

P(e, 7) = cijS i 
i+J=o 

whereas any q C Q(r) will be of the form 
a- r 

q ((, ) - ESE cii 7i. 
i=O j=o 

Some popular choices of polynomial basis 'Pr for rectangular (quadrilateral) finite 
elements are: 

(I) Serendipity family: P(r) U {r77, 477r}. 

(II) Intermediate family of the first type: 

P(r + 1) n Q(r) = P(r) U {fr7, (r-1,2 . ,r} P(r + 1) \ ?{r+1r+1} 

(III) Intermediate family of the second type: 

P(r + 2) n Q(r) = P(r) U {fr?7 (r-1,,2 . 77r; (r772 ,r-17713. 427/r} 

= P(r + 2) \ f,+1 ?7r+l; (r+21 r+177 77r+l 7r+21 

(IV) Tensor-product elements: Q(r). 
Note that 

P(r) U { rf77, 41`'} C P(r + 1) n Q(r) c P(r + 2) n Q(r) c Q(r). 

When r = 1, they are all the same; when r = 2, (I), (II) are the same, and (III), 
(IV) are the same; when r > 3, they are all different. 

The finite element solution of (2.2) is to find Uh C So(Q) = Sh(Q) n Hn (Q) such 
that 

(2.3) j VUIhVvdxdy = f vdxdy, Vv C Soh(Q) 

Since all of the four bases above contain P(r), the optimal convergence rate for 
the gradient of the finite element solution is of order O(hr). We shall show that the 
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patch recovery procedure is able to achieve O(hr?l) on an interior element patch 
and O(hr+2) at an interior nodal point. 

In order to define the recovered gradient, we introduce the Gauss points and the 
Lobatto points. 

Let Lr (x) be the Legendre polynomial of degree r on [-1, 1]. It is well known that 
Lr(x) has r zeros and L' (x) has r-1 zeros in (-1,1). Denote by g(r),... (gr) the 
zeros of Lr(x), and by l(r) .,r) the zeros of L' (x) with 1(r) = 1, (r) 1. Then 
g(.r) j = 1, .. . ,r, are called the Gauss points of order r, and l(r) j 0,1, ... r, 
the Lobatto points of order r. 

The Gauss and Lobatto points on a rectangle are defined as the tensor product 
of affine transformations of (r) and l(r) of the respective rectangle. To be more 
precise, for a rectangle centered at (x, yi) with length h and height h, the Gauss and 
Lobatto points are 

G(r) = (x- + g (r) h /2, - + g(r) h/ 2), i, j = I,.. ..,r 

L(r) - + ( (+r)h/2, + 1r)h/2), iJ = 0, 1,... 

The Gauss and Lobatto points on an arbitrary quadrilateral can be defined through 
a bilinear mapping. In this paper, we focus our analysis on the element patch that 
contains four rectangles which share a common node. 

In general, Vuh is a piecewise polynomial vector field and is discontinuous across 
element edges. The recovered gradient by the patch recovery is a continuous piece- 
wise polynomial vector field, RVUh C Sh (Q) X Sh (Q), which is uniquely determined 
by its values at the Lobatto points. The values of the recovered gradient at the 
Lobatto points are obtained by the following least squares fitting procedure. On 
an element patch Do (it contains four rectangles that share a common node, as 
we mentioned earlier), consider a polynomial in P with P(r) C P c Q(r) (for the 
serendipity family and the intermediate family of the first type), or P(r+ 1) nQ(r) c 
P C Q(r) (for the tensor product element and the intermediate family of the second 
type) , 

p* (x, y)= (1, X, y, X2 xy, y2, ...)a. 

The vector a = (ao, a1, ... , am)T is computed by fitting, in the least squares sense, 
aUh aUh auh 

(or ah) at 4(r x r) Gauss points. Then the values of R - h at the Lobatto ax ay a 
points are the values of pr at the same points. Note that adjacent element patches 
overlap. If different patches result in different recoveries at a Lobatto point in an 
overlapped region, an averaging is applied (see [8] for more details). 

3. ULTRACONVERGENCE ANALYSIS 

Define 

Ok( 2 1 j Lk_l(t)dt 

and recall that Lk-l is the Legendre polynomial of degree k - 1. Then we have 
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Here we adopt a set of hierarchic shape functions used in practical engineering 
code (cf., e.g., [4, section 6.1]). They are defined on the reference element and 
organized into three categories: 

1) Nodal shape functions. There are 4 of them: 

Node 1 N1 ((, n) = 
I 

(1- ) (1-D); 
4 

Node 2 N2((, n) = 
I 

(I + (I (-D); 
1 

Node 3 N3 (, )= (1 + () (1?+ ); 
4 

Node 4 N4((, 71) = 
I 

(1- ()(1 + D)). 
4 

2) Side modes. There are 4(r - 1) (r > 2) of them and r - 1 on each side. For 
Side 1 (between Node 1 and Node 2) we have 

1 
Nlj ((v(D 2 - ((), j = 2, ... , r; 

and for Side 2 (between Node 2 and Node 3) we have 

N2j ((' D7) = 2I(I + () j (D7), j = 2, .. r. 2 

The modes on the other two sides are defined accordingly. 
3) Internal modes. 

NO 1 TI 7) = ?)2 0()2 (D), 

N02 ((, ) = 03 0()2 (D), 

N03 ((, 77) = 02 0(3 (D7), 

N04 ((,) = 04 0(2 (D), 

N05 (( ) = 03 (()3 (D7)v 

N06 ((, D7) = 02 (()4 (D7) v 

etc. 

The following is a list of the number of internal modes for rectangular finite element 
families mentioned in the previous section. 

Pr Number of internal modes 

P(r) U {f 'T,rr7r} (r-2)(r-3)/2 r > 4, 

P(r + 1) n Q(r) (r-1)(r-2)/2 r > 3, 

P(r + 2) n Q(r) r(r-1)/2 r > 2, 

Q(r) (r-1)2 r > 2. 

Based on this set of hierarchic shape functions, we shall define a special interpo- 
lation u_[ for a given function u. We will see that u1_ has some surprisingly nice 
superconvergent properties that the traditional interpolating functions do not have. 
These properties allow Vui to be used as a vehicle in proving the superconvergence 
of the recovered finite element gradient RVUh. 
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FIGURE 1 

Given a smooth function u(x,y), we consider i((,r) = u(x((,rj),y((,77)) on the 
reference element [-1, 1]2 and define uI(x, y) with ii_ C ', such that 

4 4 r 

ui Ni (, T) + u Nij (, ) + ? (?) Noj 7,) 
i=1 j=2 j 

with the coefficients decided by (i) i1(? 1, ?1) = i(? 1, ? 1); (ii) 

+Ga - i ti) ds = 0, 

for any side mode v; and (iii) 

JV(it - itj)Vbd?d9 = 0, 

for any internal mode v. Recall the structure of the hierarchic shape functions. It 
is straightforward to verify that the definition above is meaningful and decides ui 
uniquely. Note that (i) and (ii) guarantee that u1[ is continuous across elements. 

The relationship of the special interpolation u_[ with the traditional interpolation 
can be revealed by the following observation: 

If ii C Q(r + 1), and 'r = Q(r), then iiz is the Lagrange interpolation of ii at 
the (r + 1) x (r + 1) Lobatto points. 

Remarkable recovery properties of u1_ under R can be seen from the following 
key lemma. 

Lemma 3.1. Let an element patch Do contain four rectangles that share a common 
node. (a) If u C P(r + 1) (Do) (r > 1) and the local finite element space 'r on Do 
contains the intermediate family of the first type, then RVu1I- Vu on Do; (b) if 
the four rectangles in Do are uniform, u C P(2s + 2)(Do) (s > 1), and the local 
finite element space 22s on Do contains the intermediate family of the second type, 
then RVu1I = Vu at the center of Do. 

Proof. Without loss of generality, we assume that Do is centered at the origin. The 
four rectangles are denoted as Ki, i = 1, 2, 3, 4 (see Figure 1). 
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(a) Since the finite element space has all terms in P(r + 1)(Do) n Q(r)(Do), we 
only need to prove the statement for 

u E P(r + 1) (Do) \ Q(r) (Do) = {xr+l y r+ } 

Let u = xr+l. It can be verified from the definition of the special interpolation u, 
that 

U faqsr+1(2xlhl + 1), in K1 and K4, 

I[ a?r+l(2x/h2-1), in K2 and K3, 

where hi (i = 1, 2) are the lengths of the rectangles. 

Recall 0/41() = V/(2r + 1)/2L74(), and we see that ax (u - u) = 0 along r 

Gaussian lines in each Ki, i = 1, 2,3,4. By the least squares fitting procedure, 

R I is a polynomial of degree r in x and equals , at 2r distinct points in Do. 
09X ~ ~ ~ ~ ~ ~ ~ eqasax 

aul au 
Hence R I on Do, and therefore RVu1 = Vu on Do since it is trivial to ax ax 
verify = a = ay ay 

The case u = yr+1 can be proved similarly. 
(b) Since the finite element space has all terms in P(2s + 2)(Do) n Q(2s) (Do), 

we only need to prove the statement for 

u C P(2s + 2)(Do) \ Q(2s) (Do) = {x2s+l I y2s+l ;x2s+2 ,x2s+1 y,xy2s+1 y2s+2} 

We discuss them separately. 
(1) U = X2S+l and u = y2s+1. The proof is the same as in (a) by setting r = 2s. 
(2) u = x2s+ly. In this case, 

- = f aOq2s+1(2x/h + I)y/h, in K1 and K4, 
jxaq2s+1(2x/h - I)y/h, in K2 and K3. 

Note that the mesh is uniform. As in (a), ax (u - ul) = 0 along 2s Gaussian lines 

in each Ki, i = 1, 2, 3, 4; hence, R on Do. Further, ax ax 
a ) - f aq$2s+1(2x/h + 1)/h, in K1 and K4, 
ayka laq2s+1(2x/h - 1)/h, in K2 and K3. 

Realizing that q)2s+1 is an odd function, we see that 

aS (u1-? I [) (X) = - a (U -? U-) (-X). ay a(x=+ay a)-) 

Since Do has four uniform rectangles, the least squares fitting evaluated at the 
center of Do leads to the same coefficients for function values at the symmetric 
sampling points. Hence, cancellation occurs for all terms and consequently 

R + (a - UaI) (0, 0) = 0. 

Observe that 
aa aa 
R- (0) 0) = 0 (0, 0) 
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Since ay 2s+1 is an odd function, we then have 

y~~~~~~~y a 
RftDUI (,O) tt(O ) 

(3) u = X2s+2. Now 

U - Uj aq2s+2(2x/h + 1), in K1 and K4, 
aq2s+2(2x/h - 1), in K2 and K3. 

Since /'2s+2(.) = (4s ? 3)/2L2s+1 (() is an odd function, the least squares fitting 
evaluated at (0, 0) results in cancellation of all terms in K1 U K2 and K3 U K4 as 
explained in (2). Hence 

Rta (u - ui)(0, 0) = 0. 

Further, Dx 
(2s + 2) is an odd function, Rf tOx O) = 0 = Ox (0, 0). Hence 

R 
u ) (O, O) D (0 (O 0 -). 

Ox Ox ~ ~ ~~D 

Again, it is trivial to verify that Dy D = 
au 

The analysis for terms y2s+1, xy2s+1 and y2s+2 is similar. Summing up, we have 
proved for u C P(2s + 2)(Do), 

RVuI (0, 0) = Vu(O, 0). O 

Examining the argument for u = x2s+2 in the proof of Lemma 3.1 (3), we see 
that in order to have the cancellation at the center of Do, a simple averaging will 
do the work. To be more precise, we define an averaging nodal recovery operator 
by symmetrically picking up some points in the element patch, and setting 

RVUh (O, 0) = ai (Vuh (xi, Yi ) +Vuh (-Xi, i i) + VUh (-i,-i -i) + VUh (i, -Y)i), 

where 0 < ii < h, 0 < -j< h, and a ai = 1/4. For this averaging nodal recovery 

operator, we have 

Corollary 3.1. Let an element patch Do contain four uniform rectangles that share 
a common node. If u C P(2s) (Do) (s > 1) and the local finite element space P2s-l 
on Do contains the intermediate family of the first type, then RV1I = V?1 at the 
center of Do. 

Now we define 

f 1VVW1Loo (D) = max(Il || ,|(D) 
v 1 || IIL|L (D)); 

|Vv(z) I = max(4 , (z) 1, I(z) 1) Dx Dy 

A direct consequence of Lemma 3.1 and Corollary 3.1 is the following theorem (also 
see [7] Theorem 3.1 and the Corollary for a different proof). 
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Theorem 3.1. Let the element patch Do contain four rectangles that share a com- 
mon node zo, and let Dh contain sixteen rectangles with the interior four elements 
being Do (see Figure 3). 

(a) If the local finite element space 1Pr (r > 1) on DO contains the intermediate 
family of the first type and u C Wr+2(Dh), then 

(3.1) |Vu - RVUIL(DO) ? -+2 

(b) If the four rectangles in Do are uniform, the local finite element space P2s 

(s > 1) on Do contains the intermediate family of the second type, and u C 

WS3 (DO), then 

(3.2) (VU - RVUI)(zo)| < Ch 2s+2 IUIW2s3(D ) 

(c) If the four rectangles in Do are uniform, the local finite element space 22s-1 

(s > 1) on DO contains the intermediate family of the first type, and U C W2S+1 (DO), 
then 

(3.3) |(VU - RVi)(zo)| < Ch2sIUIW2.+1(D) 

The constant C is independent of h and u. 

Remark 3.1. Note that Dh appears in the right-hand side of (3.1), since the recovery 
on DO involves the Gauss points on Dh. 

Remark 3.2. We see that RVUa is superconvergent to Vu on the entire element 

patch Do when the local finite element space contains the intermediate family of 

the first type; RVUI is superconvergent to Vu at the center of Do when the local 

finite element space contains the intermediate family of the first type with an odd 

degree; and RVuj is ultraconvergent to Vu at the center of Do when the local 

finite element space contains the intermediate family of the second type with an 

even degree. 

Although ua is not the finite element solution, we are able to show that it is 

"almost" the finite element solution in the sense of the Lemma 3.2. 

Lemma 3.2. Let a rectangular domain D C Q be subdivided into rectangles K C 

D. 

(a) If u C P(r + 1)(K) (r > 1) and the local finite element space 1Pr on D 

contains the intermediate family of the first type, then 

(3.4) J V(U - ui)Vvdxdy =, Vv E Sh(D). 

(b) If two rectangles K and K' that share a common horizontallvertical side are 

uniform, u E P(r + 2)(K U K') (r > 2), and the local finite element space P, on D 

contains the intermediate family of the second type, then 

(3.5) J/ V(U - ua)Vvdxdy = 0, Vv h 
KUK' 

where v = 0 on the rest two horizontal/vertical sides (see Figure 2). 

Proof. Again, we only need to prove the claim for u not included in the local finite 

element space. 
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FIGURE 2 

If u - xk+1, k = r, r + 1. From (a) of the proof for Lemma 3.1, we have on each 
rectangle K C D, 

V(u - ui)Vvdxdy =cj j Lk( 
)<dd7r= 

0, 
VvSo(D) 

since a9 is a polynomial of degree not exceeding r - 1 in (. The argument for 

u yk+l, k = r, r + 1 is the same. This proves (3.4) and special cases of (3.5) when 
U r+2y7-+2 xr+1 yr+1 

Recall the definition of ui, for any K C D, 

j V(u - ui)Vvdxdy = 0 

if v is an internal mode. Hence it remains to prove (3.5) for u = x7+1y, Xyr+l, and 
v being side modes and node modes. In order to include all the possible choices, 
we consider an element patch Do centered at the origin that contains four uniform 
rectangles which share a common node. Denoting by si, i = 1,2,3,4, four sides 
between K1 and K2, K2 and K3, K3 and K4, K4 and K1, respectively (Figure 1). 
Let v , be the side mode on si, j = 2,... , r. Then 

f (1 + x/h)5j (2y/h + 1), in K1, 
2 (1-x1h)0j(2y1h+ 1), in K2; 

V2,j = (1 + y/h) j(2x/h - 1), in K2, 
{(1i- h)oj(2x/h - 1), in K3; 

V3,j= 
(1 - x/h)oj(2y/h - 1), in K3, 
(1 + x/h)o,(2y/h - 1), in K4; 

f (1-y/h)5j (2x/h + 1), in K4, 
(1 + y/h)qj (2x/h + 1), in K1. 
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_ _ _ _ _ _ TDhT_1__ 

FIGURE 3 

There is only one node mode whose support is in DO: 

(I( + x/h) (I + y/h) , in K1, 
__ (1 - x/h)(I + y/h), in K2, 

(1 -x/h) (1 -y/h), in K3, 

(1 +x/h) (1 - y/h), in K4. 

Recall from the proof of Lemma 3.1 (b), if u - x r+ly, then 

f-U aq$r+1(2x/h +1)y/h, in K1 and K4, 
U - - 

ao$r+1(2x/h - 1)y/h, in K2 and K3. 
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Hence 

IJ1UK2 V(u - ua)Vvi, dxdy 
-1UK2 

h2 0/+ ?)+(2h + l)h4oj( 
2y 

+ I)dxdy 

+2a f 2x y 2y +Idd 
- I2 J(K Xr+ 

I + 1)(1 + h)0( + 

h2 JK2 h - h + 1)dxdy 

2a 2x_ x\/2y 2 JK I)( -1 )Yj,( + I)dxdy 0, 
JK2 - )( h h 

since all four terms contain one of 

kO (()df = O, k = 2,.. ,r+ 1. 

If u = xyr+l then 

U - f aq$r+1(2y/h+ l)x/h, in Kj and K2, 

lao,r+(2y/h - 1)x/h, in K3 and K4. 

Hence 

V(u - ul)Vvi,jdxdy 
K1 UK2 

a2 IK $r+ I( 
2 

+ l)O ( 
2 + I)dxdy 

h2 XKlXr+l( h )h( h)X( h 

- 42 'K rI( , + + l)dxdy 

- 12 J 4)1(7 + 1)-(1 - + l)dxdy , 

since the first and the third terms are canceled, and the second and fourth terms 
both contain the term 

I ?1+l(6)Xa( I)d J = y Lr(+)LjOi( I)d xd=yo j=2,... 

- 2 r +X1 -1X0 

The argument for the remaining three side modes is similar and, hence, mode. is 
omitted. This finishes the proof of (3.5) when v is a side mode. 
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Next we consider the node mode. When u = xr+I M 

I V(u - ul)Vvdxdy 
K1 UK4 

r2J1t+1 + 1) 
y 

(I + 
Y 

)dxdy +2/ rl(h+ 1) (I + x )dxdy h2IhKh h +1 h h 

+ h2 14 01( h + h) (I- Y xd 2 I (r?i( + 1)(I + x)dxdy 

0, 

since the first and the third terms both contain 

and the second and the fourth terms are canceled. Similarly, we can prove 

IKJUK3 V(u - ul)Vvdxdy = 0. 
K2UK3 

The proof of the integral on K1 U K2 needs some more work. 

J V(u - ul)Vvdxdy 
K1 UK2 

h2 JK >+(h+ 1) y(I + Y)dxdy + 2J X+(h+ 1) (I + xh)dxdy 

h2 1K2 ?h ) ( (I1+ Y)dxdy+ 12 I r?1( - 1)(1 - x)dxdy 

0. 

The first and the third terms are zeros. The cancellation of the second and the 
fourth terms can be seen from the following. 

j 0$r?ij$h + 1)(1 + -)dx + j hx -1)(1- h)dx 

j , (- h$) + $ri( h + 1)](1 - x)dx = 0, 

since when r is an even number, 

q$r+l(l - h) + T+1(h + 1) = 0; 

and when r is an odd number, it must be r > 3. Then it can be verified that 0,+l 
is orthogonal to any linear function from its definition. Similarly, we can prove 

V(u - ul)Vvdxdy = 0. 
K3 UK4 

The argument for u = xy'+1 is similar. Hence we have proved (3.5) when v is a 
nodal shape function. This completes the proof of the lemma. O 

Theorem 3.2. Let the support of u be contained in a rectangular domain D which 
is subdivided into rectangles. 



ULTRACONVERGENCE OF THE PATCH RECOVERY TECHNIQUE II 153 

(a) If the finite element space 'P (r > 1) on D contains the intermediate family 
of the first type and u E WC 2(D), then 

(3.6) v(u- ul)Vvdxdyl < Ch' wU 
| 

2(D)W.2 
Vv E S'(D). 

(b) If the finite element space 'P (r > 2) on D contains the intermediate family 
of the second type, the rectangular subdivisionZ is uniform, and u E WC ?3(D), then 

(3.7) I V(u - 
ul)VvdxdyI < Ch +2 aU W+3(D) v Wl(D) Vv E Sh(D). 

Here C is a constant depending only on r and the ratio of the horizontal and vertical 
sides of K c D. 

Proof. (a) We decompose D into elements UKCDK, and write 

I V(u - ul) Vvdxdy= E V(u - u) Vvdxdy. 

Recall that the local finite element space 'P7 contains the intermediate family of the 
first type. Then we have, from Lemma 3.2 (a), 

J V(u - ul)Vvdxdy Vv E h 

whenever u E P(r + 1)(K) (r > 1). By the Bramble-Hilbert lemma, there exists 
a constant C depending only on r and the ratio of the horizontal and the vertical 
sides of K, such that 

I v(u - ul)Vvdxdyl < Ch? U WUW7-+2(K)IVIW'(K)- 

Therefore, 

ID V(u- ul)Vvdxdyl < Ch + |U|W?-+2(D) E IVIW1(K) 

- Chr+l |U W?-+2(D) V1W1(D)- 

(b) We denote by S the set of all interior sides in D, and write 

V(u - u)Vvdxdy = E 1 v(u -'uV - vdxdyV 
KnK'=sES KUK' 

where vs = 0 on the two horizontal or vertical sides of K and K' other than s (see 
Figure 2). Recall that the local finite element space 'P7 contains the intermediate 
family of the second type, from Lemma 3.2 (b), 

IKK V(u -u)Vvsdxdy =o K U K'=s 
KUK' 

whenever u E P(r + 2)(K U K') (r > 2). By the Bramble-Hilbert lemma, there 
exists a constant Ci (r) depending only on r and the ratio of the horizontal and the 
vertical sides of K, such that 

IKU' V(u - ul) Vvsdxdyl < Ci (r)h |2 aU |W-+3(KUK') vs I W (KUK') 
KUK' 

For the uniform mesh, the constant Ci (r) is the same for any pair K and K' that 

share a common side. Next, we show that there exists another constant C2(r) 
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depending only on r and the ratio of the horizontal and the vertical sides of K, 
such that 

(3.8) Vs W1W(KUK') < C2(r) v W1(KUK')v 

for any pair K and K' that share a common side. Without loss of generality, we 
assume that v is not a constant other than zero on any K C D. If so, we simply 
drop the zero term fK V(u - ul)Vvdxdy from the sum 

I V(u - ul)Vvdxdy = E V(u - ul)Vvdxdy. 
D ~~~KCDK 

Having this in mind, if we set IVIW1(KUKI) = 0, the expansion of v on the basis 
functions on K U K' has to be zero. Therefore, v, = 0 on K U K' due to the linear 
independence of the basis functions. For the finite dimensional (related to r) case, 
there is a constant C2(r) such that (3.8) holds. By the uniform mesh assumption, 
this C2(r) is universal for all element pairs. Its dependence on the ratio of the 
horizontal and the vertical sides (not the size of them) can be seen by mapping K 
and K' onto the reference element and performing the standard argument. In light 
of (3.8), we have 

I V(u 
- 

ul)Vvdxdyj < Ci(r)C2(r)h V+2 1U W3(D) 
S 

IVIW11(KUKI) 

KnK'=sES 

< 4C0 (r) C2(r) h2 I u WU 3 (D)1V1W (D)- 

Note that an element may repeat as many as four times since the overlapping. D 

We are interested in derivative recovery at an interior point or a small interior 
region (e.g., an element patch) which is away from the boundary &Q. We consider 
D, a fixed rectangular interior subdomain of Q. Suppose that a rectangular mesh 
refinement is used on D that keeps its center zo as a node. Let Do be the element 
patch that contains four elements with the common node zo, let Dh be the element 
patch obtained by adding one more layer of elements to Do, and let D1 be a fixed 
rectangular domain whose boundary is about half way between the boundaries &Do 
and OD (Figure 3). Then we have the following local analysis. 

Theorem 3.3. Let u be the soluttion of (2.2) and let Uh be its finite element ap- 
proximation defined by (2.3). 

(a) If the finite element space Pr (r > 1) on D contains the intermediate family 
of the first type and u E Wt+2(D), then 

(3.9) 

jUI - UhlWl(Dh) < Ch+(| lnhl UaWr+2(D) + hk 11U1Hr+1(D)) + |U -UhIIH-k(Q), 

for a non-negative integer k < r - 1. 
(b) If the finite element space Pr (r > 2) on D contains the intermediate family 

of the second type, the rectangular subdivision is uniform, and u E Wr?3(D), then 

(3.10) 

|UI - UhIW1(DO) < Chr+2( lInhHlUWr+3(D) + hkI H1UH1Hr+1(D)) + |U - UhH|H-k(Q), 

for a positive integer k < r - 1. Here C is a constant independent of u and h. 
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Proof. We construct a cut-off function w such that Suppw C D, w 1 on D1. We 
then decompose u into u = i + u' with u = uw. For any z E Dh, we define the 
discrete Green's function G h E So(D) by 

I VG hVvdxdy = v(z), Vv E S(D). 

Let &z denote any directional derivative with respect to z, then 

ID V&zGhVvdxdy = &zv(z), Vv E S(D). 

It is known that Il&zGzW(D) < C In hI (cf., [9, Theorem 3.14]) with the constant 
C independent of z. Therefore, 

-z (Ul -h) (Z) J z VzhV(iGV - Uh)dxdy J VOzGhV(i1 - ii)dxdy. 
D D 

By Theorem 3.2, we have 

0z(ULI- Uh)(Z)| < Chr+?1U1Wr?+1?1(D) |zGzjW1(D) < Chr+ I|lnhn huWr??(D), 

where I = 1 for (a) and 1 = 2 for (b). Since C is independent of z, we then have 

(3.11) I - Uh|hWl (Dh) < Chr+1 |InhHujWr+il+(D). 

Next, we consider uI - u'. Note that u' = 0 = uI on D1 D Dh, we then have 

UI- UhIW1 (Dh) UhIW1 (Dh) = -U -UhIWc (Dh) 

Further, 

J v (u' - u' ) Vvdxdy = 0, Vv e S (D1). 

Hence, by [3, Theorem 1.2], we have for 1 < q < oo and k a nonnegative integer, 
that there exists a constant C depending only on q and k such that 

|U UlWl Dh)<C misn (lu' X twl (Di) + d1 |u/ X/ILo(D1)) I u 'hlW(Dh) XCSh 0 

+ Cd-1I-k-2/qjjU/ _ U, 11~- + ~ ~ - UhHWkh(Di)) 

where d = dist(&Dh, D1) which is a fixed number independent of h by the con- 

struction of D1. Since u' = 0 on D1, only the last term on the right-hand side is 

left. By selecting q 2. We have 

-u U1hjW0i(Dh) < C1U/ - Uh1H-k(D1)- 

Recall u' - ua = u- - (Uh - Uh), and notice that IIVIIH-k(D1) < 11VIIH-k(D) < 

11VIIH-k(Q). We then have 

- Uh|W1 (Dh) ? C(|i| - Uhh |H-k(D) + IU - Uh11 H-k(Q)). 

For the first term on the right-hand side with k < r-1, we apply the negative norm 

estimate for Dirichlet's problem on a rectangle (D) given in [1, section 7, Example 

3] to have 

|a - Uh|H-k(D) < Chr+l +k?HU|Hr+1(D) < Chr+l+ka1U11Hr+1(D), 

since 

r+l 

lUW|Hr+1(D) ? C j DiUDr+1i-WIL2(D), 
i=O 



156 ZHIMIN ZHANG 

and all derivatives of w are independent of h. Hence 

IUI -UhIW1 (D1,) = U/ -UhlW1(Dh) <IIhr??k|UIIHr+l(D) + COIU - UhIIH-k(Q). 

The conclusion follows by combining this with (3.11), and applying the triangle 
inequality. O 

In order to prove the main theorem of the paper, we assume that the pollution 
caused by the boundary singularity is properly controlled (for example, by local 
mesh refinement) in the sense that for some non-negative integer k < r -1, 

(3.12) ||u - 
UhflH-k(Q) < C(f)h', 

where C(f) is a constant depending only on f and Q, and I r + 1, 2s + 2, or 2s, 
whenever it is necessary. For more details about negative norm estimates, see [5, 
section 6.3]. 

Theorem 3.4. Let u be the solution of (2.2), let Uh be its finite element approx- 
imation defined by (2.3), and let zo E Do C Dh c DI c D c Q be defined as in 
Theorem 3.3. Assume that (3.12) is satisfied. 

(a) If the local finite element space 'Pr (r > 1) on D contains the intermediate 
family of the first type and u E Wc 2(D), then 

(3.13) 1Vu - RVUhLQoo(DO) < Ch +(| ln h |U|Wr?2(D) + hkIIUIIHr?1(D) + 0(f)), 

for a non-negative integer k < r - 1. 
(b) If the local finite element space P2s (S > 1) on D contains the interme- 

diate family of the second type, the rectangular subdivision is uniform, and u E 
W28+3(D), then 

(3.14) 

I(Vu - RVUh)(zo)l < Ch 2+2( lnh||u|W2,+3 + hk -IH2s+1(D) + 0(f)), 

for a positive integer k < 2s - 1. 
(c) If the local finite element space J%2s-I (s > 1) on D contains the intermediate 

family of the first type, the rectangular subdivision is urniform, and u E W2,+1 (D). 
Then 

(3.15) (Vu - RVUh)(zo) < Ch 2(I lnhl IUIVV.2+(D) + hkIIUIIH2s(D) + C(f)), 

for a non-negative integer k < 2s - 2. 

Proof. (a) By the triangle inequality 

(3.16) VU - 
RVUhIIL(Do) < IVU - RVUIIL.(Do) + IIRV(uI - Uh)|L. (Do) 

Observe that the recovery operator R is a bounded operator with an bound C(r) 
depending only on r and size ratios among elements in the patch. Then 

(3.17) 
||RV(ul - Uh)IIL.(Do) < C(r) IV(UI - Uh)IIL.(D,,) = C(r)aUI - Uh Wl (D,2)* 

Note that the recovered gradient on Do involves sampling Gauss points on Dh. 

Substituting (3.17) into (3.16), the conclusion follows by applying (3.1) and (3.9). 
(b) Again, the triangle inequality gives 

|(Vu - RVUh) (zO) ? < (Vu - RVUa) (zo) I + IRV (Ul- - ) (ZO) 1, 

where 

|RV(Ul - Uh)(Zo) <? C(S)IIV(UI - Uh)IIL,o(Do) = C(S)UI - UhWl (Do). 
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Then we use (3.2) and (3.10) to achieve the desired result. 
(c) The argument is the same as in (b) by using (3.3) and (3.9) with 

IRV(ul - Uh) (ZO) I <3 ui Ul - Uh I W1 (DO) ? 

Applying Theorem 3.4 to the four rectangular finite element families I-IV intro- 
duced in Section 2, we summarize the results. 

1) When r = 1, all four families reduce to the same bilinear element. If the 
element center (Gauss point) is used as a sampling point, we will have supercon- 
vergence recovery on the whole element patch even when the rectangular mesh is 
nonuniform. But if arbitrary sampling points are selected symmetrically (one from 
each element), superconvergence recovery only occurs at the center of the patch 
that contains four uniform rectangles. 

2) When r = 2, I and II are the same the quadratic serendipity element; III 
and IV are the same-the quadratic tensor-product element. For all cases, if the 
Gauss points (four in each element) are used as sampling points, superconvergence 
recovery is achieved on the whole element patch even for nonuniform rectangular 
meshes. Further, for the tensor product element, ultraconvergence recovery occurs 
at the center of the patch that contains four uniform rectangles. 

3) When r > 3, for families II-IV, if the Gauss points (r2 in each element) 
are used as sampling points, superconvergence recovery is achieved on the whole 
element patch. But when r is an odd number and the patch contains four uniform 
rectangles, a simple averaging of four symmetric points on the patch will result 
in superconvergence recovery at the center of the patch. For families III and IV, 
when r is an even number and the Gauss points are used as sampling points, except 
superconvergence recovery on the whole patch, we have ultraconvergence recovery 
at the center of the patch that contains four uniform rectangles. 

Remark 3.3. As a byproduct, Theorem 3.4 (c) explains the observation from nu- 
merical tests [8] that superconvergence recovery occurs at the element nodal point 
(patch center) with arbitrary sampling points (not Gauss points) for odd-order fi- 
nite elements when uniform meshes are used (see [2] for additional superconvergence 
results in this respect involving local symmetry). However, our theory suggests the 
use of the Gauss points to achieve the best possible recovery. 
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